3.578 \(\int \frac{(a+b \cos (c+d x))^3}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=124 \[ \frac{2 b \left (9 a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a \left (a^2-3 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}-\frac{2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt{\cos (c+d x)}} \]

[Out]

(-2*a*(a^2 - 3*b^2)*EllipticE[(c + d*x)/2, 2])/d + (2*b*(9*a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*b*
(3*a^2 - b^2)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*a^2*(a + b*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c
 + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.187826, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2792, 3023, 2748, 2641, 2639} \[ \frac{2 b \left (9 a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a \left (a^2-3 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}-\frac{2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(3/2),x]

[Out]

(-2*a*(a^2 - 3*b^2)*EllipticE[(c + d*x)/2, 2])/d + (2*b*(9*a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*b*
(3*a^2 - b^2)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*a^2*(a + b*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c
 + d*x]])

Rule 2792

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(
d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e +
 f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*
d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 + d*
n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^3}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+2 \int \frac{2 a^2 b-\frac{1}{2} a \left (a^2-3 b^2\right ) \cos (c+d x)-\frac{1}{2} b \left (3 a^2-b^2\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 b \left (3 a^2-b^2\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{4}{3} \int \frac{\frac{1}{4} b \left (9 a^2+b^2\right )-\frac{3}{4} a \left (a^2-3 b^2\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 b \left (3 a^2-b^2\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-\left (a \left (a^2-3 b^2\right )\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (b \left (9 a^2+b^2\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 a \left (a^2-3 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 b \left (9 a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 b \left (3 a^2-b^2\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.508369, size = 86, normalized size = 0.69 \[ \frac{2 \left (\left (9 a^2 b+b^3\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-3 \left (a^3-3 a b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{\sin (c+d x) \left (3 a^3+b^3 \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(3/2),x]

[Out]

(2*(-3*(a^3 - 3*a*b^2)*EllipticE[(c + d*x)/2, 2] + (9*a^2*b + b^3)*EllipticF[(c + d*x)/2, 2] + ((3*a^3 + b^3*C
os[c + d*x])*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(3*d)

________________________________________________________________________________________

Maple [A]  time = 3.388, size = 303, normalized size = 2.4 \begin{align*} -{\frac{2}{3\,d} \left ( 4\,{b}^{3}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+9\,{a}^{2}b\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +{b}^{3}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +3\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{3}-9\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a{b}^{2}-6\,{a}^{3}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-2\,{b}^{3}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x)

[Out]

-2/3*(4*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+9*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipt
icE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2-6*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*b^3*cos(1/2*d*x+1/2*c)*s
in(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)